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Hyperspectral Image Denoising Using Local
Low-Rank Matrix Recovery and Global
Spatial-Spectral Total Variation
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Abstract—Hyperspectral images (HSIs) are usually contami-
nated by various kinds of noise, such as stripes, deadlines, im-
pulse noise, Gaussian noise, and so on, which significantly limits
their subsequent application. In this paper, we model the stripes,
deadlines, and impulse noise as sparse noise, and propose a unified
mixed Gaussian noise and sparse noise removal framework named
spatial-spectral total variation regularized local low-rank matrix
recovery (LLRSSTYV). The HSI is first divided into local overlap-
ping patches, and rank-constrained low-rank matrix recovery is
adopted to effectively separate the low-rank clean HSI patches
from the sparse noise. Differing from the previous low-rank-based
HSI denoising approaches, which process all the patches individ-
ually, a global spatial-spectral total variation regularized image
reconstruction strategy is utilized to ensure the global spatial-
spectral smoothness of the reconstructed image from the low-
rank patches. In return, the globally reconstructed HSI further
promotes the separation of the local low-rank components from
the sparse noise. An augmented Lagrange multiplier method is
adopted to solve the proposed LLRSSTV model, which simulta-
neously explores both the local low-rank property and the global
spatial-spectral smoothness of the HSI. Both simulated and real
HSI experiments were conducted to illustrate the advantage of
the proposed method in HSI denoising, from visual/quantitative
evaluations and time cost.

Index Terms—Denoising, hyperspectral image (HSI), local low
rank, mixed noise, spatial-spectral total variation (SSTV).

1. INTRODUCTION

YPERSPECTRAL image (HSI) data occupy an impor-
I I tant place in the remote sensing community since they can
provide hundreds of contiguous, narrow spectral bands. With the
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wealth of available spectral information, HSIs have been widely
applied in food safety, pharmaceutical process monitoring and
quality control, and biomedical, industrial, and forensic appli-
cations [1]. However, HSIs are unavoidably contaminated by
various kinds of noise during the acquisition process, because
of their unique physical design, which severely degrades the
quality of the images and limits the precision of the subsequent
processing tasks, such as classification, unmixing, target detec-
tion, and so on [1]-[4]. Therefore, as a preprocessing step of the
HSI image application, denoising is an active and challenging
research topic.

HSIs contain two spatial dimensions (along the track and
across the track) and one spectral dimension (wavelength) [5],
[6]. Generally speaking, an HSI is an extension of an RGB
image, and it contains hundreds of bands sampled from the vis-
ible and infrared range of the electromagnetic spectrum. If we
treat each band of an HSI as a gray-level image, many of the
state-of-the-art gray-level image denoising methods [7]-[10]
can be adopted to denoise the HSI in a band-by-band manner.
However, this kind of processing method ignores the high cor-
relations between the different spectral bands and often results
in a relatively low-quality result. As mentioned in many studies
[11]-[14], spectral redundancy and correlation is also important
for HSI denoising and restoration. As a result, spatial-spectral
redundancy and correlation is a unique characteristic of HSIs,
and it has resulted in many specially designed methods for HSI
denoising. Notably, there are two challenges for HSI denoising.
One is that the noise intensity of the different bands is often
different [15]. Typically, most bands of an HSI are of high qual-
ity; meanwhile, some specific bands may be corrupted by heavy
noise. This results in the challenge of how to effectively preserve
the high signal-to-noise ratio (SNR) bands while denoising the
low-SNR bands. The second challenge is the existence of mixed
noise in HSIs, which are often simultaneously contaminated by
stripes, deadlines [5], impulse noise, Gaussian noise [16], and
so on. The statistical characteristics of the different types of
noise are different, resulting in a new barrier to the denoising
of HSIs. The goal of this work is to remove the mixed noise of
HSIs before the subsequent interpretation task.

In the past two decades, various methods have been proposed
for HSI data noise removal [17]-[20]. In this paper, we focus
on the total variation (TV) and low-rank-based HSI denoising
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methods and give a brief review of the existing popular methods
below. TV regularization is a powerful model in image pro-
cessing and was first proposed by Rudin et al. [56] to solve
the gray-level image denoising problem because of its ability
to effectively preserve edge information and promote piecewise
smoothness. In [22], TV regularization was further developed
into the color image restoration problem, and a color TV model
was proposed. Compared to color images, HSIs have hundreds
of bands and the noise intensity of the different bands is often
different [15]. To better suppress the noise in the high noise
intensity bands while preserving the detailed information in the
low noise intensity bands, the denoising strength should be adap-
tively adjusted to the noise intensity in the different bands. Based
on this criterion, Yuan et al. [23] proposed an HSI restoration
algorithm employing a spectral—spatial adaptive TV (SSAHTV)
model. In [5], Chang et al. proposed to treat the HSI as a spatial—
spectral volume [25] and proposed anisotropic spatial-spectral
total variation (SSTV) regularization to enhance the smoothness
of the solution along both the spectral and spatial dimensions. In
this way, both the consistent spectral information in the spectral
dimension and the spatial piecewise smooth information in the
spatial dimension are promoted and the restoration result is sig-
nificantly improved. Notably, despite their good performance in
single-type noise removal, the TV-regularized methods cannot
remove mixed noise in HSIs.

Low-rank matrix/tensor approximation is another powerful
tool in image processing. It describes the problem of finding
and exploiting low-dimensional structures in high-dimensional
data and has been widely used in the image denoising problem to
separate the low-dimensional signal from the high-dimensional
noise [21], [24], [26]. For a scene of a clean HSI, it is usually
assumed to be composed of only a few endmembers, which
are far fewer than the number of spectral bands and pixels [1],
[27], revealing the low-rank structure of the hyperspectral im-
agery. Based on this fact, principal component analysis (PCA)
[13], low-rank tensor approximation [28], and low-rank matrix
factorization based methods have been successfully adopted to
denoise HSIs. Unfortunately, these classical methods have two
major drawbacks. First, these methods are sensitive to outliers
[21]; however, HSIs are often contaminated by outliers such
as stripes, deadlines, impulse noise, and so on. Second, these
methods can perform well only when the image is corrupted by
a small amount of Gaussian noise. When the image is contam-
inated by heavy Gaussian noise, the obtained low-dimensional
signal will also be corrupted by noise. In [21], Candes et al.
proposed the robust PCA (RPCA) model and solved the first
problem. They modeled the outliers and Gaussian noise sepa-
rately, and proved that, under certain conditions, there is a high
probability of recovering the low-rank matrix from the observed
data corrupted by mixed noise. The RPCA model and its varia-
tions have been successfully used in HSI mixed-noise removal
[14], [29], [30]-[32], achieving state-of-the-art results.

For the second problem, there are two main approaches. The
low-rank-based denoising methods only explore the correla-
tion between spectral bands, ignoring the spatial correlation of
local neighborhood pixels. Naturally, the first approach is to
incorporate the spatial information in the low-rank model by

Observed image Gaussian noise
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Lateral Horizontal
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Index

Local low rank prior Spatial-spectral smoothness prior

Fig. 1. HSI degradation model and the priors of a clean HSI.

simultaneously utilizing both the spectral and spatial informa-
tion. Several tools have been utilized in low-rank models to
denoise HSIs, including wavelets [33], [34], TV regularization
[35], [37], [47], [48], sparse representation [36], and so on, and
have also achieved state-of-the-art results. One notable fact is
that all these methods model the whole HSI as low rank and im-
pose reasonable regularization constraints on the whole image.
From another aspect, the spectral signatures of the same material
from different local areas may be significantly different, show-
ing the spectral variability of HSIs. The existence of spectral
variability can destroy the global low-rank property of HSIs,
to some extent, and can result in performance degradation of
the low-rank-based denoising methods. Fortunately, pixels from
the same local area are more likely to be the same material, and
the spectral signatures of the same material are more likely to
be the same. That is to say, if we model the HSI locally, the
low-rank property can be effectively enhanced. Based on this
fact, Zhang et al. [14] and Xie et al. [38] first segmented the HSI
into overlapping 3-D patches, and then used the RPCA model to
process each patch sequentially. To more efficiently group the
spatial-spectral similar pixels, Lu et al. [39] introduced a spa-
tially adaptive local similar pixel search method to adaptively
select the patches. The same idea was also introduced in [40],
where the Markov random field method was used to segment
the HSI into patches. Besides the low-rank modeling of local
patches, the nonlocal similarity of patches has also been adopted
to further improve the performance of HSI denoising [41], [42].
The basic idea of this kind of method is that it is more effective
to model the HSI with a local low-rank structure to remove the
mixed noise. Unfortunately, these local low-rank-based meth-
ods cannot remove the structured sparse noise (i.e., the sparse
noise existing in the same location of some bands or even all the
bands), so it is necessary to use a spatial constraint to remove
the structured sparse noise.

The degradation of the observed HSI and the priors are pre-
sented in Fig. 1. Following the idea of [14], we model the
impulse noise, dead pixels, and stripes as sparse noise, and
the desired clean HSI underlies the local low-rank structure, as
shown in Fig. 1. Furthermore, from the frontal, lateral, and hor-
izontal views, the desired clean HSI also exhibits global piece-
wise smoothness from the spatial view and spectral consistency
from the spectral perspective. To sum up, it is essential to build
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a unified framework and simultaneously benefit from the lo-
cal low-rank structure and the global spatial-spectral piecewise
smoothness and consistency.

In light of the above-mentioned arguments, we propose the
SSTV-regularized local low-rank matrix recovery (LLRSSTV)
method for HSI denoising. The HSI data are first divided into
overlapping patches and a rank-constrained local low-rank-
based method is adopted to separate the low-rank components
from each noisy patch sequentially. In this way, the sparse noise
can be effectively separated from the HSI data. Unfortunately,
the low-rank components may still be corrupted by a small
amount of Gaussian noise. SSTV is then used to reconstruct
these low-rank patches of the image, to further remove the noise
by capturing the global smoothness of the HSI. In return, the
reconstructed image is fed back to help the local low-rank and
sparse decomposition in the first step. The main contribution of
this paper is that this is the first time that a global SSTV regu-
larization model has been adopted to reconstruct the denoised
low-rank patches in HSI denoising. Recently, the patch-based
processing strategy has become a hot topic in image denois-
ing and restoration [8], [10], [14]. Most of these works have
reconstructed the denoised patches in a simple way, where the
final output of each pixel is the weighted average across mul-
tiple patches containing the pixel. Here, we assume that the
reconstructed image enjoys global spatial-spectral smoothness,
and we adopt the SSTV model to reconstruct these denoised
patches. Thus, the desired local and global properties of the HSI
are integrated. From the local perspective, the rank-constrained
low-rank matrix recovery is adopted to effectively separate the
low-rank components from the sparse noise. As to the global per-
spective, SSTV is utilized to explore the global spatial-spectral
piecewise smoothness and consistency of the HSI. The exper-
imental results confirm that the proposed method clearly im-
proves the denoising results when compared with some of the
state-of-the-art techniques, in both the quantitative evaluations
and the visual comparisons.

The rest of this paper is organized as follows. In Section II,
the proposed model is introduced. The optimization procedure
is presented in Section III. Both simulated and real HSI data
experiments are described and analyzed in Section IV. Finally,
the conclusions are drawn in Section V.

II. RELATED WORK
A. Problem Formulation

In general, HSIs are assumed to be corrupted by a mixture
of different kinds of noise, which typically consists of Gaussian
noise, impulse noise, dead pixels or lines, and stripes [14]. The
degradation of an HSI can be modeled as

O=L+S+N (D)

where O represents the observed corrupted HSI; £ is the latent
clean HSI; S denotes the sparse noise, which contains impulse
noise, deadlines, and stripes; and V is the Gaussian noise. All the
images O, £, S, and \ are of the same size, i.e., M x N X p,
where M x N is the spatial size of the HSI and p is the number

of bands. The purpose of HSI denoising is to estimate the clean
image £ from the noisy observation O.

B. SSTV-Based Regularization

TV-based regularization was first proposed in [56] and has
since been widely used in HSI processing [5], [23], [35] due
to its desirable properties, such as convexity and the ability
to capture the global piecewise smoothness structure. The TV
norm can be either an anisotropic TV norm or an isotropic TV
norm [25]. For HSI noise removal, obvious blurring artifacts
can be easily introduced by the isotropic model [5], inspiring us
to focus on the investigation of the anisotropic TV norm [19].
For a gray-level image w of size M x N, the anisotropic TV
norm is defined as

lullrv = [Diull, + [IDjull, @)

where D; and D are linear operators corresponding to the hor-
izontal and vertical first-order discrete differences, respectively.
This model can be easily extended to an HSI in a band-by-band
manner. That is to say, every band of the HSI is treated as a gray-
level image. The TV norm (2) is then applied to each band, and
then added together [23], [35]. However, this band-by-band TV
model only explores the spatial smoothness, ignoring the high
correlation of the spectral signatures and the gray-level images
of each band [48]. For an HSI, two nearby band images are
usually very similar, indicating spectral consistency. Therefore,
it can be argued that the noise can be removed by simultane-
ously enforcing both spatial piecewise smoothness and spectral
consistency. For a 3-D observed HSI cube L, the anisotropic
spatial-spectral TV norm can be formulated as

[£llsstv = DLl + [ID; L], + Dy L] S

where D is the forward finite-difference operator along the
spectral direction. The definitions of operators D;, D;, and
D, are

D,L=L(i+1,5,b) — L(i,7,b)
D;L=L(i,j+1,b) — L(i,,b) @
Dy L = L(i,j,b+ 1) — L(i,],b)

with periodic boundary conditions.

By using the regularization (3), the piecewise smoothness
structure in both the spatial and spectral directions can be ex-
plored. This model treats the gradient of each dimension equally.
However, the intensity of the gradient in the different directions
may not be the same. Fig. 2 shows the gradient image of the
HSI cube in the three different directions. We, therefore, extend
(3) to the following anisotropic SSTV regularization:

[£llsstv = il DiLlly + 73D Ll +mlDu LI, (5)

where 7;, 7;, and 7, are three regularization parameters to
tradeoff the contribution of the gradient norm in the differ-
ent directions. We adopt the observation made in [25] and set
7; = 7; = 1, which means that the two spatial dimensions make
the same contribution to the SSTV regularization.
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(b) (©) (d)

Fig. 2. Gradient images of the HSI cube in three different directions.
(a) Original image. (b) The gradient image from the spatial ¢-direction;
(c) the gradient image from the spatial j-direction; and (d) the gradient im-
age from the spectral direction.

III. PROPOSED METHOD
A. Local Low-Rank-Based HSI Denoising

Spectrally adjacent bands of an HSI typically exhibit strong
correlations, and spatially adjacent pixels in the HSI are also typ-
ically highly correlated, which both reveal the low-rank structure
of hyperspectral imagery. From a linear mixture model perspec-
tive [1], the corresponding clean HSI L can be expressed as
L = AM, where L € RMN*? jg the Casorati matrix (a matrix
whose columns comprise vectorized bands of the HSI) of clean
HSI £; A € RMN>" and M € R™*P are the low-rank factor-
ization matrices of the matrix L; and r is the dimension of the
signal subspace. Immediately, the exploration of clean matrix
L can be formulated as the following rank-constrained RPCA
optimization problem [35]:

r{nSnHLH* +A[|S||1, st., [|[O—-L—=S||% <e¢, rank (L)< r
(6)

where O, S, and N are the Casorati matrices of observed image
O, sparse noise S, and Gaussian noise A/, respectively. A is the
sparsity regularization parameter. || L||. is the nuclear norm, i.e.,
the sum of the singular values of matrix L. For the derivation
of the optimization (6), we refer the reader to our previous
paper [35].

Model (6) can now be directly used in the mixed-noise re-
moval of HSIs. However, considering that matrix O has a size of
MN x p, the spatial dimensionality greatly exceeds the spec-
tral dimensionality (M N > p), and O is typically a very thin
matrix. In this case, the denoised image by rank-constrained
RPCA may result in blurring and a loss of details [46]. Fortu-
nately, pixels from the same local area are more likely to be the
same material, and the spectral signatures of the same material
are more likely to be the same. This inspires us to explore the
local low-rank property of the HSI; that is to say, we analyze the
HSI in a spatial patch-wise manner, rather than globally, as in
[14] and [41]. Thus, we divide the HSI into overlapping patches
and exploit the patch-level local low-rank structure.

We define an operator R; ; : £L — L; ;, where R; ; is a bi-
nary operator that extracts m X n rows from an m X n X p
patch cube centralized at location (4, j) of the HSI, and L, ;
denotes the corresponding Casorati matrix. We use L; ; to
denote the result of operation R;; on the tensor L, i.e.,
L;; =R, ;(£) =L; ;. By this definition, for each patch ma-
trix O; ;, model (6) is adopted to extract L; ; and S; ;. Thus,
the local patch-based rank-constrained RPCA model can be

described as

min > (1Ll + AlSi51h)
(i,4)€[l,M —m+1]x[1,N —n+1]
sty |0 = Lo = Sijlle <e, rank (L) <. (D)

Here, we assume that r is the upper bound of the signal
dimension for all the patches. The patch-wise RPCA model
(7) has been applied to HSI denoising with different algorithm
solutions [14], [38]. However, differing from the previous ap-
proaches in which each patch is denoised individually, we treat
all the patches globally and update them simultaneously.

B. SSTV-Regularized Local Low-Rank (LLRSSTV)-Based HSI
Denoising

Patch-based local low-rank methods have achieved great suc-
cess in HSI denoising [14], [38], [41], [42]. These low-rank-
based methods investigate the spectral similarity of the HSI and
have a great advantage when faced with random sparse noise
and Gaussian noise separation. However, when the sparse noise
is structured, i.e., the sparse noise exists in the same location
of some HSI bands or even all the bands, the separation perfor-
mance for the sparse noise and Gaussian noise will be severely
degraded. In addition, when the Gaussian noise is heavy, the
removal of the noise will also be influenced. Thus, spatial in-
formation exploration is also important in the low-rank-based
denoising methods.

By embedding this SSTV regularization (5) into the local
patch-based rank-constrained RPCA model (7), the proposed
LLRSSTV model can be described as

rgngi,j (L1l + MISiil1) + 7lI£][ssTv

S.t., HOZ"]' - ,67] _S7JH%‘ S g, rank (,C,L',]') S T (8)

where A and 7 are the regularization parameters.

It should be noted that, in the proposed LLRSSTV model, the
local low-rank and sparse matrix decomposition is implemented
in the local patches simultaneously to better separate the sparse
noise and the heavy Gaussian noise from the local low-rank
clean patches by exploiting the local low-rank structure. From
another perspective, the anisotropic SSTV is globally imposed
to reconstruct the low-rank patches of the image and effectively
preserve both the spatial and spectral smoothness of the whole
HSI. With this strategy, the small amount of noise in the local
low-rank patches can be further removed, and the edge informa-
tion of the reconstructed HSI is globally strengthened. In return,
the globally reconstructed HSI feeds back to help the decom-
position of the local low-rank clean components and the sparse
noise. This procedure goes on alternately until convergence.
The augmented Lagrange multiplier (ALM) method used in the
proposed LLRSSTV model is presented in the following part.

C. Optimization Procedure

To efficiently solve the proposed LLRSSTV model (8), we
first introduce three auxiliary variables 7, X € RM >N and
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U € RM*N>p>3 "and we obtain the following formulation:

D (Ll + 1S 1) + 7l
i

st, Lij =0, J =& U=DAX,
110i,; — Lij —

EN

min
LS,J,xXuU

Sijllp <e, rank (£; ;) <r 9)

in which D = [r;D;, 7,D;, ,D;] denotes the TV operator in
the spatial and spectral directions. This problem can be effi-
ciently solved by the ALM method, which minimizes the fol-
lowing augmented Lagrangian function:

mint (£,8,7,X.U) = wr_,r;_gw; (€211 + 21851
1
+ <yoj Oij —Lij — S,;,j> +t5 105 — Lij = Sijll%

+ (I Ly = Tig) + 51
+ (VU -DX)+ (YT - X)

I 2 2
+ & (I =Dl + 117 - x13)

= Tilly ) + Tl

s.t., rank (£; ;) <r (10)

where p is the penalty parameter, and yO yﬁ Y, and Y*
are the Lagrangian multipliers. In addlthIl Y=1[,V,)5l
U= [Uy,Us,Us], and the norm || -||3 stands for the sum of
squares of all the elements for both the 3-model and 4-model
tensors.

Typically, a natural way to solve this problem is to itera-
tively optimize the augmented Lagrangian function (10) over
one variable while fixing the others. We categorize the update
in the k + 1th iteration as two problems:

(£ SFFYY = argmin/ (£,S, J"), s.t., rank (Lij)<r
S.L

(11a)

(TEHL M YR = argmin € (L8

TAU i,j ,j,X,Z/[)

(11b)
where (11a) can be regarded as the local patch-wise low-rank
and sparse matrix decomposition problem; meanwhile, (11b)
is the SSTV-regularized global image reconstruction problem
from these denoised low-rank patches.
1) Local low-rank and sparse matrix decomposition opti-
mization for(L,S): with the other parameters fixed, the
subproblem for (£, S) simplifies to

i Lijll« +AllSi
af%gllnzm (I[Li 11« + MISi 51l
<ch9} g —Lij _Si,j>
L
+ 200w = Ly = Silly + (F Loy = T )
1S 2
+ ELi; - Faly)
s.t., rank (£; ;) <. (12)

To solve the problem (12), we adopt the idea proposed in [46]
and perform rank-constrained RPCA on a family of patches
{0O; ;}, accumulating a weighted sum of the results {£; ;, S; ; }

to reconstruct (£, §). The optimization for each (£, ;, S; ;) pair
can be reformulated as
arguin £ + 4S5l + (V5 Oy = Li = Si)
H 2 c
+ 5 H(’)w - Ei_’j 7Si,j||F + yi.j,ﬁuj - ‘77',,]'
+ gHE i— ._7”||§7 s.t., rank (£; ;) <. (13)

We alternately update the two variables with the following
strategy, and the optimization of (13) is reduced to two simpler
minimization subproblems.

a) The L, ;-related subproblem is
H o

argmin_ (1 ll+ 5 00 = €05 = 815 +99 Ju
rank (£; ;) <r

¢ Sl 35
= argmin |[|£; ;] —|— - X 2/

rank (£; j)<r ' 2

X Lij = ((Oij = Sij + Ti)/2

2
+ 0 = vE) /e, (14)

The step for updating £ can be solved by the following
Lemma 1.

Lemma 1: [49]. We let W € R""*P be a given matrix,
where the singular value decomposition (SVD) of matrix W
of rank r is defined as

=UE, V", E, =diag ({oi}1<i<r)-

The singular value shrinkage operator then obeys

Ds(W) = argmin §||L|l. —&-fHL W%
rank (L)<r
where Ds(W) =UD;(E,)V*, Ds(E,) =
diag {max ((o; — ¢),0)}.

By using Lemma 1, we can immediately obtain the optimiza-
tion result for (14):
Lij =Dy ((0

— S+ Jig) 2+ (V0 = VE)/ (2m).

5)

b) The S, ;-related subproblem is

2
ar%min)»HSi,jHl + g HO” —Li;i—Sij+ yf?_/. /MHF
i,

=R/, (01— Lij+Y° /u) (16)
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where ¥, () is the soft-thresholding (shrinkage) operator
defined as follows [50]:

x—Ap, ifx>r/p
x+r/p, ife <= p.
0, otherwise

§R)L/;L(‘r) =

2) Global SSTV-regularized image reconstruction optimiza-
tion for (J,X,U): Given {L;;} patches and the
Lagrangian multipliers, the problem over (7, X,U) is
obtained as

argmin/ (J,X,U) —}n/‘lfn (<3{€7£ j —L7,L-,j>
i.j
'
+ L 0Lis = Tislly ) + iUl + (V.U ~ D)
)%
+ (0T = 2)+ & (lu - Dl + 17 - x]3) -

a7

Analogously, we alternately update one variable while fixing
the other two, and the update of (J, X',U/) in (17) is split into
the following three subproblems.

a) The J-related subproblem can be reformulated as

argmin% ||j — X+ y"/ﬂ”;
J

o5, (tleu-a,+ )

This is a convex function, which has the following closed-
form solution:

J=(x=Y"/u+y, R

/ (1 * Zu RiTJR”)

where the R, ; binary operator is defined before, RT j isits
inverse, and 1 stands for an all-one tensor of size M x N X p.
b) The X-related subproblem can be given as

(18)

(Lij+YE /)

19)

. 2
arg;nmg |t = DX + Y ull; +g |T =X+ ull,-
(20)
It can be solved by considering the following normal equation:
+(T + Y%/

which can be efficiently solved by the fast Fourier transform
(FFT) method:

D'D+1)X =D U+ Y/u) Q1

F(I+Y*¥/p)+DI(U+Y/p)
1+ (F(r:D;)? + (F(1;D;))? + (F(n,Dy))?
(22)

X=rF"1

In (22), F(-) denotes the FFT, and F ! is the inverse trans-
form. D represents the adjoint operator of D.

Algorithm 1: HSI denoising with the LLRSSTYV algorithm.
Input: M x N x p observed HSI O, desired rank r, patch
size m X n, stopping criterion ¢, regularization parameters
A, 7,and 7,
Output: Denoised image X
Initialize: L=X =S =7 = O Uu=0,
YO, VE VY =0, =107, pinax = 105, p = 1.5,
and k = 0
Repeat until convergence
- Local low-rank and sparse matrix decomposition via
(11a)
Update all (£; ;,S; ,
respectively
- Global SSTV-regularized image reconstruction via (11b)
Update (7, X,U) using (19), (22), and (24), respectively
- Update the Lagrangian multipliers using (25), and the
penalty parameter update p := min(pp, fmax )
Check the convergence conditions:

max {||Oi.,j - 55‘;1 - Sz'kfl”w [N

||uk+1 7DXI€+1HOC} <e.

;) patches using (15) and (16),

o Xk+l|‘oo7

¢) The U-related subproblem has the following formulation:

argmin 7|U||; + (¥, U — DX) + % |t — DX
12

= argmin7{|4[[; + 5 IIU DX +Y/ul; (23
where ) = [V1, )b, V3] and U = [Uy, Uy, Us]. Likewise, the
optimization (23) can be solved by the soft-thresholding (shrink-

age) operator [the same as that of (16)]:

Z/ﬁ = %T/H(TZ'DZ‘X — yl/,u,)
Uy =R, (;D;X =s/p) .
Uz = %T/u(TbDbX —YVs/u)

After solving the two problems (1la) and (11b), the
Lagrangian multipliers yf_?], yf/,, Y, and Y* can be updated
in parallel as -

YO =Y + (0 ;
37 37‘ + 1(L;
y J/—i-,u(Z/l DX)
V¥ =%+ u(J - X)

Summarizing the aforementioned description, we arrive at an
augmented Lagrangian alternating direction procedure to solve
the proposed LLRSSTV model, as presented in Algorithm 1.

In Algorithm 1, the inputs are the noisy HSI O, the desired
upper bound rank r, the patch size m x n, the regularization
parameters A, 7, and 7,, and the stopping criterion €. p is the
parameter introduced in the ADMM [44], which can be set
as a constant value. The upper bound rank r represents the
dimension of the HSI subspace. In [41], Peng ef al. tried to

(24)

—Li;
= Jij)

- Si;j)

(25)
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estimate the rank of each patch by the use of the Akaike in-
formation criterion/minimum description length method. In our
HSI degradation model, the image is assumed to be corrupted
by mixed noise. As an alternative, we propose a simple way
to estimate the upper bound rank r as follows. First, we use a
median filter as a preprocessing step for the observed HSI to
remove the sparse noise. Subsequently, a multiple regression
theory based approach [51] is adopted to estimate the noise of
the HSI. We then obtain the clean image L and the noise N,
which are the Casorati matrices of the clean HSI O and the noise
N, respectively. The singular values of L and N are denoted
as [o1,...,0p), [S1,...,S,)], respectively. We calculate the up-
per bound rank r as a natural number such that o, > S; and
Orp1 < Si.

The patch size m x n is set to 20 x 20. The step size of
the patch is 10 x 10 (i.e., we only use patches every ten pixels
along both the horizontal and vertical directions), to speed up the
computation. Parameter A is the tradeoff between the local low-
rank clean image and the sparse noise, and the regularization
parameter 7 is used to control the tradeoff between the nuclear
norm and the SSTV norm. The analysis of parameters A, 7, and
T, is provided in the experimental part. Finally, the stopping
criterion ¢ is set to le — 6.

We initialize L =X =8 =7 =0, U = 0, and also all the
Lagrangian multipliers to be 0. For variable p shown in the
augmented Lagrangian function (10), we initialize it as 1072
and update it as g := min (pu, ftmax) in each iteration step.
This strategy of determining the variable 1 has been widely used
in the ALM-based methods, and it can support the convergence
of the algorithm [50]. Finally, the output of Algorithm 1 is the
denoised image X € RM *N>p,

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Both simulated and real data experiments were undertaken
to demonstrate the effectiveness of the proposed LLRSSTV
method for HSI denoising. We selected eight different noise
removal methods for comparison, i.e., SSAHTV [23], SSTV
[25], the block-matching and four-dimensional filtering algo-
rithm (BM4D) [52], low-rank representation with spectral dif-
ference space (LRRSDS) [48], noise-adjusted iterative low-rank
matrix approximation (NAILRMA) [15], fast hyperspectral im-
age denoising based on low-rank and sparse representations
(FastHyDe)l [24], low-rank constraint and SSTV (LSSTV) [37],
low-rank matrix recovery (LRMR) [14], and the TV-regularized
low-rank method (LRTV) [35]. However, it should be noted that
the SSAHTYV, SSTV, BM4D, NAILRMA, and FastHyDe meth-
ods are only suitable for the case of Gaussian noise and slight
sparse noise. Before the denoising, the gray values of each HSI
band were normalized to [0, 1]. For SSAHTV and SSTV, the
regularization parameters were manually adjusted to the opti-
mal in each experiment to balance the fidelity term and the TV
regularization term. BM4D and NAILRMA are parameter-free

'The MATLAB code was provided by Dr. Lina Zhuang, and the extension
of the conference paper has been submitted to IEEE JOURNAL OF SELECTED
TopPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING.

Fig. 3. (a) HYDICE Washington DC Mall dataset used in the simulated ex-
periment (R: 60, G: 27, B: 17). (b) Pavia city center dataset used in the simulated
experiment (R: 80, G: 34, B: 9).

methods. For LRRSDS, FastHyDe, LSSTV, LRMR, and LRTV,
the parameter selection was consistent with the description in
the original papers.

A. Simulated HSI Data Experiments

1) Data Description: In the simulated data experiments, two
HSI datasets were adopted. The first dataset was the Washington
DC Mall dataset,” which was collected by the hyperspectral
digital imagery collection experiment (HYDICE) sensor [48].
The whole image contains 1208 x 307 pixels and 191 spectral
bands. In the experiments, a subimage of size 256 x 256 x
191 was used, which is presented in Fig. 3(a). The Pavia city
center dataset® was collected by the reflective optics system
imaging spectrometer (ROSIS-03). As some spectral bands of
the Pavia city center dataset are heavily contaminated by noise,
they cannot be used as the reference for denoising. Therefore,
the first few bands of this data were removed, and the size of the
subimage was selected as 200 x 200 x 80, which is shown in
Fig. 3(b). For the simulated experiments, we used the peak SNR
(PSNR) index, the structural similarity index (SSIM) [53], and
the mean spectral angle distance (MSAD) to give a quantitative
assessment of the results achieved by the different methods. For
the HSI, we computed the PSNR and SSIM values between
each noise-free band and denoised band, and then averaged
them. These metrics are denoted as mean PSNR (MPSNR) and
mean SSIM index (MSSIM). The MSAD is defined as

MN T
1 1 (xH” - (xY)

MSAD = —— —— X arccos ——————— (26)

MN; m (]| - [ ]|

where X7 and X" are the ith spectral signatures of the noise-free
and denoised HSIs, respectively.

To simulate a noisy image, we added Gaussian noise, salt-
and-pepper impulse noise, and stripes to all the bands of the two
HSI datasets, as in the following four cases.

2 Available: https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.
html

3 Available: http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes
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MPSNR values of LLRSSTV on the Washington DC Mall image, as related to parameters A and 7. The data were corrupted by the noise simulated in

case 1 with (a) G = 0.025 and P = 0.05, (b) G = 0.05and P = 0.1, (¢) G = 0.075 and P = 0.15, (d) G = 0.1 and P = 0.2, and (e) in case 3.

(2)

(b)

©

Fig. 5.

(d) (e)

MPSNR values of LLRSSTV on the Pavia city center image, as related to parameters A and 7. The data were corrupted by the noise simulated in case 1

with (a) G = 0.025 and P = 0.05, (b) G = 0.05and P = 0.1, (c) G = 0.075 and P = 0.15, (d) G = 0.1 and P = 0.2, and (e) in case 3.

Case 1: Zero-mean Gaussian noise was added to all the
bands of the Washington DC Mall and Pavia city center data. The
variances of the Gaussian noise were G = 0.025, 0.05, 0.075,
and 0.1. Meanwhile, the impulse noise was also added to all the
bands to simulate sparse noise. The percentages of the impulse
noise were P = 0.05, 0.1, 0.15, and 0.2, correspondingly.

Case 2: For this case, the noise intensity was different for
the different bands. Different-intensity noise was added to each
band, with the variance of the Gaussian noise being randomly
selected from O to 0.2.

Case 3: On the basis of case 2, impulse noise was added to
all the bands. The impulse noise intensity of the different bands
was different, with the percentage being randomly selected from
0t00.2.

Case 4: On the basis of case 3, 30% of the bands were ran-
domly selected to have stripes added [5]. The stripe number of
each selected band was randomly selected from 3 to 15.

2) Parameter Analysis: In the proposed LLRSSTV method,
the choice of the regularization parameters A and 7, the upper
bound rank r, the patch size m x n, and parameter 7, determines
the HSI denoising results. Next, we discuss the influence of these
parameters on the LLRSSTV denoising.

We first present the influence of parameters A and 7 on the
denoising results of the two HSI datasets corrupted by sim-
ulated noise in case 1. Notably, we fixed the patch size as
m x n =20 x 20 and parameters (7;,7;,7) = (1,1,0.5), as
recommended in [25]. The upper bound rank r was estimated by
the method described in Section III-C. The proposed LLRSSTV
was then tested using different values of parameters A and 7, with
A varied between 0.05, 0.1, 0.2, 0.4, 0.6, and 0.8 and 7 varied
between 0, 0.005, 0.01, 0.02, 0.04, 0.06, and 0.08. When 7 = 0,
the proposed LLRSSTV method reduces to the local low-rank-
based method with a traditional weighted average based patch
reconstruction strategy [8] in each iteration step.

Figs. 4 and 5 report the MPSNR values of LLRSSTV on the
two datasets, as related to parameters A and 7. From Figs. 4(a)

o 2 | gom- a0 a8 o
g3 Z 3 o 23 ° R — 537'_-_._.__'
= = = = =
4 0.5 1 0.5 1 >0 0.5 1 3 0 0.5 1 360 0.5 1
2 Iy x x A
(a) (b) (© (C)) (e)

Fig. 6.  MPSNR values of LLRSSTV on the Washington DC Mall image as
parameter 73, is changed. The data were corrupted by the noise simulated in
case 1 with (a) G = 0.025 and P = 0.05, (b) G = 0.05and P = 0.1, (¢c) G =
0.075and P =70.15,(d) G = 0.1 and P = 0.2, and (e) in case 3.

and 5(a), it can be observed that the performance of the pro-
posed LLRSSTYV is similar when 7 is 0 and 0.005. That is to
say, the TV-based image reconstruction performs the same as
the traditional weighted average based method in the low-noise
case. However, when the noise level increases, the advantage
of the TV-based image reconstruction becomes apparent. As
presented in Figs. 4(b)—(e) and 5(b)—(e), the MPSNR values in
the case of 7 = 0.005 are higher than those of 7 = 0. From these
figures, it is not easy to select the optimal values of parameters A
and 7 for all the cases of noise level. Fortunately, the denoising
results of LLRSSTV maintain robustness as A and 7 change. In
the simulated and real data experiments, we fixed the parame-
ters as A = 0.2 and 7 = 0.005, which could ensure acceptable
denoising results in all the noise levels.

Subsequently, we investigated the effect of the spectral TV
regularization by varying 7, between 0, 0.25, 0.5, 0.75, and
1. Similarly, we fixed the parameters as A = 0.2, 7 = 0.005,
and (7;,7;) = (1,1). The upper bound rank r was estimated
by the method described in Section III-C. When 7, is set
to 0, the SSTV-regularized image reconstruction method re-
duces to the band-by-band TV-regularized-based method. Fig. 6
shows the results obtained with the Washington DC Mall image,
and Fig. 7 presents the results obtained with the Pavia city center
image. It is clear that the denoised results when 7;, is larger than
0 are better than those when 7 is equal to 0. This confirms the
contribution of the spectral smoothness according to the spec-
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Fig. 7. MPSNR values of LLRSSTV on the Pavia city center image as pa-

rameter 7, is changed. The data were corrupted by the noise simulated in case 1
with (a) G = 0.025 and P = 0.05, (b) G = 0.05 and P = 0.1, (c) G = 0.075 and
P=70.15,(d) G= 0.1 and P = 0.2, and (e) in case 3.
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Fig. 8.  MPSNR values of LLRSSTV on the Washington DC Mall image as
the upper bound rank r parameter is changed. The data were corrupted by the
noise simulated in case 1 with (a) G = 0.025 and P = 0.05, (b) G = 0.05 and
P=0.1,(c) G=0.075and P = 0.15, (d) G = 0.1 and P = 0.2, and (e) case 3.
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Fig. 9. MPSNR values of LLRSSTV on the Pavia city center image as the

upper bound rank r parameter is changed. The data were corrupted by the noise
simulated in case 1 with (a) G = 0.025 and P = 0.05, (b) G = 0.05 and P =
0.1,(c) G=0.075and P = 0.15, (d) G = 0.1 and P = 0.2, and (e) case 3.

tral consistency. Typically, the value of 7, indicates the spectral
consistency intensity of the HSI. In our experiments, we fixed
parameter 73, as 0.5, which achieves an acceptable denoising re-
sult. Furthermore, for other cases, we can decrease the 7;, value
when the spectral consistency intensity of the HSI is low and
increase the value otherwise.

The upper bound rank 7 represents the separation boundary
of signal and noise. It means that, for each patch, the first r
principal components of the patch are more likely to be the
clean signal, and the rest of the principal components are noise.
Figs. 8 and 9 show the analysis of the upper bound rank 7 of
the proposed method with the two datasets by fixing the other
parameters. As presented in the figures, for both datasets, the
best value of the upper bound rank 7 is larger when the simulated
noise level is lower, and the value is smaller otherwise. The
reason for this is that when the noise level is higher, it is more
difficult to discern the signal from the noise and, as a result,
only a few signals can survive amongst the noise. The black
oval marked in each figure represents the rank estimated by the
proposed multiple regression theory based approach. It can be
clearly observed that, in all cases, the estimated r provides the
optimal or suboptimal evaluation values in terms of the MPSNR
criterion.

We also analyzed the influence of the patch size, to validate
the local low-rank property of the HSI. In the experiments, we
set m = n and changed them synchronously between 10, 20
40, 60, 80, and 256(200). Since, for different patch sizes, the
optimal parameter pairs A and 7 are different, we selected them

4 4 37, 35 37

-, S A I~ =N
g 3: “e. g ‘\"1 £y " RN G/ m
£ o, S ] g3 | g% N n
= p) a2 = W = g = ‘a.
410720 40 0 80256 1020 40 60 80256 10 20 40 60 80256 10 20 40 60 80256 020 40 60 80 256
Patch size atch size atch size Patch size Patch size
(@ (b (©) (d (e)

Fig. 10. MPSNR values of LLRSSTV on the Washington DC Mall image as
the patch size m x n is changed. The data were corrupted by the noise simulated
in case 1 with (a) G = 0.025 and P = 0.05, (b) G = 0.05and P = 0.1, (c) G =
0.075 and P = 0.15, (d) G = 0.1 and P = 0.2, and (e) in case 3.
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Fig. 11.  MPSNR values of LLRSSTV on the Pavia city center image as the

patch size m x n is changed. The data were corrupted by the noise simulated
in case 1 with (a) G = 0.025 and P = 0.05, (b) G = 0.05and P = 0.1, (¢) G =
0.075 and P = 0.15, (d) G = 0.1 and P = 0.2, and (e) in case 3.

from [0.05, 0.1, 0.2, 0.4, 0.6, 0.8] and [0, 0.005, 0.01, 0.02, 0.04,
0.06, 0.08], respectively, to obtain the highest MPSNR values.
Parameter 73, was set as 0.5, the step size was m/2 X n/2, and
the upper bound rank r was estimated by the proposed method.
Figs. 10 and 11 present the results of the proposed LLRSSTV on
the two datasets with different patch sizes. Generally speaking,
with the increase of the patch size, the MPSNR values obtained
by LLRSSTYV decrease. In particular, the MPSNR values ob-
tained in the case of a patch size of 256 in the Washington
DC Mall image and 200 in the Pavia city center image are
much lower than those achieved when the patch size is 20. This
demonstrates the efficiency of modeling the low-rank property
of the HSI locally instead of globally. From another aspect, the
highest MPSNR values are obtained by LLRSSTV with a patch
size of 20 x 20, which inspired us to set the patch size in all
the experiments as 20 x 20, to be consistent with the LRMR
method in [14].

Up to this point, all the parameters in the proposed LLRSSTV
can be fixed or adaptively selected. Parameters A and T were
fixed as 0.2 and 0.005, the SSTV regularizations were set as
7, = 0.5, the patch size of each local patch was set as 20 x 20,
and the upper bound rank r of all the patches was estimated by
the utilized multiple regression theory based approach.

3) Comparison With Other Methods: In this section, we
describe how we compared the proposed LLRSSTV method
with other HSI denoising methods on simulated noisy data.
Table I reports the quantitative evaluation results of the different
denoising methods with the simulated noise in cases 14 for the
Washington DC Mall image and the Pavia city center image.
The best results for each quality index are labeled in bold, and
the second-best results are underlined. On the whole, the pro-
posed method achieves the highest MPSNR and MSSIM values
in most cases when compared to the other methods, indicating
the advantage of the proposed method in HSI denoising. The
quantitative evaluation results for SSTV are better than those
for SSAHTYV, because of the role of the spectral smoothness
regularization. LRMR divides the HSI into overlapping patches
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TABLE I
QUANTITATIVE EVALUATION RESULTS OF THE DIFFERENT DENOISING METHODS WITH THE SIMULATED NOISE IN CASES 1-4 ON THE TWO HSI DATASETS

Data Noise Level Evaluation SSAHTV ~ SSTV BM4D LRRSDS NAILRMA FastHyDe LSSTV LRMR LRTV LLRSSTV
case index
Washington G = 0025 MPSNR 25.13 27.12  26.23 39.31 31.51 38.85 42.28 4240  41.17 44.16
DC Mall P 605 MSSIM 0.653 0.814  0.812 0.984 0.922 0.985 0.989 0.989  0.988 0.992
image ’ MSAD 12.07 12.41 13.09 5.46 7.54 4.10 2.89 3.62 3.07 2.88
G =005 MPSNR 22.55 2432 2348 35.83 26.79 29.11 38.34 36.94  37.50 39.60
P—ol MSSIM 0.505 0.729  0.605 0.962 0.844 0.906 0.975 0.967 0.972 0.980
Case 1 ' MSAD 12.83 14.43 15.98 7.03 10.09 7.90 4.02 5.81 4.57 4.14
G = 0075 MPSNR 20.77 2239  23.39 32.99 23.49 24.02 35.81 32.71 35.17 36.68
P =015 MSSIM 0.450 0.668  0.604 0.926 0.766 0.804 0.957 0.926  0.951 0.964
’ MSAD 15.91 15.75 14.70 9.02 12.41 11.47 6.07 7.87 5.73 5.23
G=01 MPSNR 19.21 20.22 21.71 30.73 21.20 21.52 33.32 29.24  33.18 34.37
P 0'2 MSSIM 0.379 0.537  0.552 0.881 0.69 0.731 0918 0.871 0.926 0.946
' MSAD 16.37 17.34 14.76 10.98 14.29 13.65 7.08 9.84 6.85 6.04
MPSNR 27.36 2995 3143 35.02 39.0 40.79 36.89 3497  36.17 38.67
Case2 Gaussian  MSSIM 0.736 0.852  0.868 0.951 0.979 0.991 0.961 0.955  0.958 0.981
MSAD 11.22 10.38 11.79 7.89 5.09 4.27 5.23 7.13 5.89 5.03
Gaussian ~ MPSNR 21.99 23.66 24.14 34.32 25.79 31.64 35.75 33.70  34.39 36.59
Case 3 + MSSIM 0.486 0.711 0.630 0.944 0.817 0.915 0.944 0.941 0.938 0.968
impulse MSAD 14.90 14.73 16.37 8.11 12.33 13.07 7.42 7.50 8.21 5.90
Gaussian ~ MPSNR 22.15 23.05  24.10 34.12 25.13 30.95 35.52 33.20 33.44 36.27
Case 4 +stripes+ MSSIM 0.513 0.615  0.628 0.942 0.803 0.908 0.939 0.935  0.928 0.972
impulse MSAD 16.35 16.13 16.35 8.27 12.69 13.34 8.37 7.64 8.16 5.93
Pavia city G = 0.025 MPSNR 25.60 28.20  27.15 42.17 31.06 43.53 40.48 41.09 4043 42.99
center image P 605 MSSIM 0.696 0.837  0.805 0.989 0914 0.993 0.987 0.989  0.985 0.991
’ MSAD 10.12 9.23 8.46 3.12 6.099 2.539 3.184 3.15 3.30 2.98
G =005 MPSNR 23.95 25.31 25.2 36.93 28.84 35.09 36.82 35.89  36.48 38.29
P=01 MSSIM 0.592 0.757  0.701 0.962 0.883 0.970 0.969 0.960  0.963 0.974
Case 1 ' MSAD 10.62 10.38 10.37 5.37 7.12 4.05 4.74 5.31 4.98 4.50
G = 0075 MPSNR 21.52 23.15 24.30 32.75 24.92 25.60 34.41 31.88  33.95 35.33
P =015 MSSIM 0.502 0.692  0.682 0.910 0.821 0.853 0.947 0913  0.936 0.954
’ MSAD 13.85 10.86 9.24 8.06 8.37 7.27 5.49 7.08 6.42 5.17
G=01 MPSNR 20.04 2129 2247 30.12 21.78 22.29 32.37 29.00  31.58 33.13
p_ 0'2 MSSIM 0.459 0.621 0.617 0.853 0.702 0.771 0.919 0.861 0.898 0.928
’ MSAD 12.68 11.70 9.83 9.96 9.20 8.37 6.18 8.14 7.89 5.82
MPSNR 27.64 30.31 32.00 35.86 37.93 39.25 36.21 3498  35.96 36.86
Case 2 Gaussian ~ MSSIM  0.7576 0.873  0.894 0.946 0.974 0.982 0.958 0.954 0948 0.987
MSAD 14.43 7.81 10.16 6.78 4.57 391 478 6.60 8.96 5.12
Gaussian ~ MPSNR 22.41 2443 2531 34.10 28.41 31.55 34.46 32.58  33.67 34.98
Case 3 + MSSIM 0.551 0.768  0.710 0.922 0.872 0.922 0.941 0.924  0.931 0.956
impulse MSAD 14.50 10.98 10.89 7.27 7.33 7.04 4.95 6.88 7.07 5.87
Gaussian ~ MPSNR 22.35 23.71 25.14 33.90 25.38 32.63 34.33 32,12 3331 34.47
Case 4 +stripes+ MSSIM 0.547 0.666  0.701 0.921 0.811 0.945 0.941 0.920  0.928 0.952
impulse MSAD 14.81 12.42 11.29 7.37 9.33 8.21 6.03 6.85 7.95 6.64

and processes each patch individually with the weighted
average based patch reconstruction. In contrast, in the proposed
LLRSSTV method, all the patches are processed together and
the SSTV-regularized method is adopted to reconstruct the
whole 3-D HSI. As a result, the improvement of LLRSSTV
compared to LRMR demonstrates the contribution of the
SSTV-regularized image reconstruction, which is a major con-
tribution of the proposed method. LRRSDS and LSSTV achieve
relatively good denoising results, but the quantitative evaluation
results achieved by these two methods are still poorer than those
of LLRSSTV. NAILRMA and FastHyDe appear suitable for
the case of Gaussian noise removal. However, when the sparse
noise intensity increases, the performance of the NAILRMA and

FastHyDe methods decreases sharply. LRTV models the low-
rank property of the HSI globally, combined with a spatial band-
by-band TV regularization, which can be regarded as a special
case of LLRSSTV. Compared to LRTYV, the better quantitative
evaluation results for LLRSSTYV indicate the superiority of mod-
eling the low-rank property of the HSI locally, along with the
spectral smoothness regularization.

Fig. 12 shows the results of the different denoising meth-
ods with the Washington DC Mall image in case 3. Fig. 12(a)
presents the false-color composite of the Washington DC Mall
image. The image was contaminated by the mixed noise sim-
ulated in case 3, as presented in Fig. 12(b). Fig. 12(c)—(1) dis-
plays the denoising results of the different methods. The average
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Fig. 12.  Washington DC Mall image before and after denoising. The PSNR values are averaged with the three presented bands. (a) Original false-color image (R:
145, G: 68, B: 17). (b) Noisy image with the simulated noise in case 3 (11.55 dB). The image denoising results of (¢) SSAHTV (19.55 dB), (d) SSTV (23.71 dB),

(e) BM4D (22.83 dB), (f) LRRSDS (34.91 dB), (g) NAILRMA (23.76 dB), (h) FastHyDe (25.68 dB), (i) LSSTV (33.43 dB), (j) LRMR (31.95 dB), (k) LRTV
(32.29 dB), and (1) LLRSSTV (36.06 dB).

() 0 M

Fig. 13. Magnified results of Fig. 12. (a) Original band. (b) Noisy image. The image denoising results of (c) SSAHTYV, (d) SSTV, (e) BM4D, (f) LRRSDS,
(g) NAILRMA, (h) FastHyDe, (i) LSSTV, (j) LRMR, (k) LRTYV, and (1) LLRSSTV.

Fig. 14.  Pavia city center image before and after denoising. (a) Original image of band 51. (b) Noisy image in case 3 (15.54 dB). The image denoising results of
(c) SSAHTYV (23.90 dB), (d) SSTV (25.96 dB), (e) BM4D (26.44 dB), (f) LRRSDS (35.01 dB), (g) NAILRMA (30.26 dB), (h) FastHyDe (34.11 dB), (i) LSSTV
(33.57 dB), (j) LRMR (33.34 dB), (k) LRTV (34.30 dB), and (1) LLRSSTV (36.58 db).
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Fig. 15.

Magnified results of Fig. 14. (a) Original band. (b) Noisy image. The image denoising results of (c) SSAHTYV, (d) SSTV, (e) BM4D, (f) LRRSDS,

(g) NAILRMA, (h) FastHyDe, (i) LSSTV, (j) LRMR, (k) LRTV, and (1) LLRSSTV.

0 50 100 150 200
Band number

(a) (b)

Band number

Fig. 16. PSNR and SSIM values of each band in the experiment with the
Washington DC Mall image in case 3. (a) PSNR. (b) SSIM.

PSNR values of the three bands shown are labeled below the
figure. Fig. 14 shows the results with the Pavia city center image.
Figs. 13 and 15 present the magnified results of Figs. 12 and 14,
respectively. From Figs. 12 to 15(c)—(e), it can be observed that
SSAHTYV, SSTV, and BM4D fail to remove the mixed noise.
LRRSDS and LRMR can remove the sparse noise, but still
leave some small amounts of noise in the experimental results.
LSSTV and LRTV can obtain better results; unfortunately, they
both smooth the details of the results, to some extent. As pre-
sented in Fig. 13(i) and (k), in the LSSTV and LRTV results,
the cars along the road and the details on the roof are smoothed
and blurred. A similar phenomenon also appears in Fig. 15(i)
and (k). From these figures, it can be observed that the proposed
LLRSSTYV is best able to preserve the local details and remove
the noise.

We also show the PSNR and SSIM values of each band of the
Washington DC Mall and Pavia city center images in the case 3
experiments in Figs. 16 and 17, respectively. As presented in the
two figures, the proposed method achieves the best PSNR and
SSIM values in most bands of the image, which further demon-
strates the superiority of the proposed LLRSSTV method.

B. Real HSI Data Experiments

In this section, we present the experimental results obtained
with three real datasets.

0 20
Band number

Band number

(2 (b

Fig. 17. PSNR and SSIM values of each band in the experiment with the
Pavia city center image in case 3. (a) PSNR. (b) SSIM.

1) AVIRIS Indian Pines Dataset: The Indian Pines dataset*
was acquired by the NASA airborne visible/infrared imaging
spectrometer (AVIRIS) instrument over the Indian Pines test
site in Northwestern Indiana in 1992. The data size is 145 x
145 pixels and 220 bands. Some bands of the dataset are heavily
corrupted with mixed Gaussian and impulse noise, while the
other bands are of high quality. The purpose of the Indian Pines
dataset denoising is to remove the noise in the noisy bands and
preserve the details of the high-quality bands.

Figs. 18 and 19 show the images of bands 150 and 220 before
and after denoising via the different methods. It can be clearly
observed that SSAHTYV, SSTV, and BM4D fail to restore the de-
tails of bands 150 and 220. BM4D can recover some of the arti-
facts, as shown in Fig. 19(d). LRRSDS, NAILRMA, and LRMR
can more or less remove the noise, but the denoising results are
not complete, as presented in Fig. 19(e), (f), and (h), which still
show some noise remaining. LSSTV and LRTV are moderately
effective at removing the noise. However, they also smooth the
details, as marked by the red circle shown in Fig. 19. To sum up,
FastHyDe and the proposed LLRSSTYV achieve the best denois-
ing results, removing most of the noise while preserving most
of the details of the image. In Table II, we also provide a blind
image quality assessment, as introduced in [54],% ° to evaluate

“4Available: https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.
html
SThe MATLAB code was provided by Dr. Jingxiang Yang
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Fig. 18.
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Band 150 of the Indian Pines dataset before and after denoising via the different methods. (a) Original image of band 150. Image denoising results of

(b) SSAHTYV, (¢) SSTV, (d) BM4D, (e) LRRSDS, (f) NAILRMA, (g) FastHyDe, (h) LSSTV, (i) LRMR, (j) LRTV, and (k) LLRSSTV.

(b) (d) (N

(a)

(e)

Fig. 19.

(2) (h)

Band 220 of the Indian Pines dataset before and after denoising via the different methods. (a) Original image of band 220. Image denoising results of

(b) SSAHTYV, (c) SSTV, (d) BM4D, (e) LRRSDS, (f) NAILRMA, (g) FastHyDe, (h) LSSTV, (i) LRMR, (j) LRTYV, and (k) LLRSSTV.

TABLE I
BLIND HYPERSPECTRAL IMAGE QUALITY ASSESSMENT ON THE INDIAN PINES IMAGE

Method SSAHTV ~ SSTV  BM4D LRRSDS

NAILRMA

FastHyDe LSSTV LRMR LRTV  LLRSSTV

Score 17.95 18.95 16.26 16.11

16.16

16.14 15.67 17.04 15.79 14.89

the images before and after denoising. A better denoising result
is indicated by a lower blind image quality assessment score
[54]. As shown in this table, the proposed LLRSSTV method
achieves the lowest score, further demonstrating the superiority
of LLRSSTV.

2) EO-1 Hyperion Dataset: The second real dataset used in
the experiments was the EO-1 Hyperion hyperspectral dataset
[55], which covers an agricultural area of the state of Indiana,
USA. The original data have 242 bands spanning 0.35-2.6 pym.
After removing blank bands, 192 bands were retained, and a
subimage of 150 x 150 was adopted to implement the exper-
iment. The EO-1 Hyperion data are heavily contaminated by
stripes and impulse noise, which can be categorized as sparse
noise.

Figs. 20 and 21 show the denoising results obtained with the
EO-1 Hyperion data of bands 116 and 195, respectively. These
two bands are heavily contaminated by stripes. Both LRTV and
LLRSSTV can effectively remove the stripes. From another as-
pect, FastHyDe and the proposed LLRSSTYV can better preserve
the details, as marked by the red circle in Fig. 21, while the other
comparison methods cannot. In addition, the stripes still exist in
the other denoising results, as shown in Figs. 21 and 22(b)—(h).
To further demonstrate the effect of the proposed LLRSSTYV,
we also present the vertical mean profiles of band 116 of the
EO-1 data before and after denoising in Fig. 22. As shown in
Fig. 22, the horizontal axis is the column number, and the vertical
axis represents the mean digital number value of each column.
Typically, the mean profiles are assumed to be smooth. Unfor-
tunately, there are rapid fluctuations in the curve of the original
observation image, due to the stripes. After denoising, this kind
of fluctuation can be effectively suppressed. From Fig. 22, we
can observe that the proposed LLRSSTV can obtain a smoother

vertical mean profile, indicating the best destriping performance
in the EO-1 Hyperion experiment.

3) HYDICE Urban Dataset: The HYDICE Urban dataset
was adopted in the third real data experiment. The original im-
age is 307 x 307 x 210 in size, and we selected a subimage
of 200 x 200 x 210 for our experiment. Figs. 23 and 24 show
the images of bands 139 and 206 before and after denoising.
Horizontal stripes exist in most bands of the Urban dataset and
can be regarded as a textural feature of the image from a spectral
perspective. The TV-based method can remove this kind of strip-
ing, to some extent. However, it also results in over-smoothing
of the image, as presented in Fig. 24(b). LRRSDS, FastHyDe,
LSSTV, LRTYV, and LLRSSTYV achieve good destriping results.
However, LRTV and LSSTV also lose a lot of details, as pre-
sented in Fig. 23(g) and (f). From another aspect, FastHyDe and
the proposed LLRSSTV can both effectively remove the stripes
and preserve the local details of the image.

C. Discussion

The running time is an effective way to measure the effi-
ciency of a denoising method. For each iteration of the proposed
method, the computational burden consists of two parts, i.e., lo-
cal low-rank and sparse matrix decomposition and global SSTV-
regularized image reconstruction. The global SSTV-regularized
image reconstruction is accelerated by FFT. The local low-rank
and sparse matrix decomposition can be computed by SVD and
a shrinkage operation. The running times of the different meth-
ods on the three real image datasets are presented in Table III.
All the experiments were conducted in MATLAB 2014a on the
same personal computer with an Intel i7 CPU at 2.60 GHz and
12 GB of memory. The proposed method could also be further
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Fig. 20. Band 116 of the EO-1 Hyperion dataset before and after denoising via the different methods. (a) Original image of band 116. Image denoising results
of (b) SSAHTYV, (c) SSTV, (d) BM4D, (e) LRRSDS, (f) NAILRMA, (g) FastHyDe, (h) LSSTV, (i) LRMR, (j) LRTV, and (k) LLRSSTV.

(a) (b) © (®) (h) () )
Fig. 21. Band 195 of the EO-1 Hyperion dataset before and after denoising via the different methods. (a) Original image of band 195. Image denoising results
of (b) SSAHTV, (¢) SSTV, (d) BM4D, (e) LRRSDS, (f) NAILRMA, (g) FastHyDe, (h) LSSTV, (i) LRMR, (j) LRTV, and (k) LLRSSTV.
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Fig. 22.  Vertical mean profiles of band 116 in the real EO-1 Hyperion dataset experiment: (a) Original, (b) SSAHTYV, (c) SSTV, (d) BM4D, (e) LRRSDS,
(f) NAILRMA, (g) FastHyDe, (h) LSSTV, (i) LRMR, (j) LRTV, and (k) LLRSSTV.

(@) (b) © (d) @ ® (h) (@ @

Fig. 23.  Band 139 of the HYDICE Urban dataset before and after denoising via the different methods. (a) Original image of band 139. Image denoising results
of (b) SSAHTYV, (c) SSTV, (d) BM4D, (e) LRRSDS, (f) NAILRMA, (g) FastHyDe, (h) LSSTV, (i) LRMR, (j) LRTV, and (k) LLRSSTV.

Fig. 24.  Band 206 of the HYDICE Urban dataset before and after denoising via the different methods. (a) Original image of band 139. Image denoising results
of (b) SSAHTY, (c) SSTV, (d) BM4D, (e) LRRSDS, (f) NAILRMA, (g) FastHyDe, (h) LSSTV, (i) LRMR, (j) LRTV, and (k) LLRSSTV.

TABLE III
RUNNING TIMES (IN SECONDS) OF THE DIFFERENT METHODS IN THE REAL HSI DATA EXPERIMENTS

HSI Data

SSAHTV ~ SSTV  BM4D LRRSDS NAILRMA FastHyDe LSSTV LRMR LRTV  LLRSSTV
AVIRIS Indian Pines 43 19 262 108 96 26 62 198 409 122
EO-1 Hyperion 29 15 252 89 81 22 49 138 327 93
HYDICE Urban 72 38 455 176 154 39 106 417 677 192

accelerated by parallel computing of the SVD of all the patches,
which occupies the most time in each iteration.

Instead of providing the mathematical convergence proof, we
present the convergence tendency of the LLRSSTV algorithm
by experiment. Fig. 25 presents the evolutionary curve of the
MPSNR values versus the iteration number of the proposed

LLRSSTV in case 1 of the simulated experiments. From the
figure, it can be clearly observed that the MPSNR values of
the proposed method increase as the iteration progresses. In
addition, the values become stable after only about ten itera-
tions, indicating the good convergence behavior of the proposed
method with the two experimental datasets.
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Fig. 25. MPSNR values versus the iteration number of LLRSSTV with the
two datasets in the simulated experiments of case 1. (a) The Washington DC
Mall image. (b) The Pavia city center image.

V. CONCLUSION

Different types of noise have different statistical character-
istics, and the existence of mixed noise in HSIs brings about
great challenges for noise removal. In this paper, we have pro-
posed an HSI mixed-noise removal method by simultaneously
exploiting the local low-rank structure and the global spatial—
spectral piecewise smoothness and consistency of the HSI. The
HSI is divided into overlapping patches and each clean patch
is assumed to be of local low rank. Differing from the previ-
ous low-rank-based approaches, which process all the patches
individually, all the patches are updated together to separate
the low-rank clean signal from the sparse and Gaussian noise.
Notably, to further remove the Gaussian noise, a global SSTV
regularization model is utilized to reconstruct the clean image.
The SSTV-regularized image reconstruction can also preserve
the global spatial-spectral smoothness of the HSI. In return, the
reconstructed clean image is fed back to help the decomposi-
tion of the local clean patches and sparse noise. The proposed
LLRSSTYV method was tested on several HSIs, which confirmed
the superiority of LLRSSTYV, in both visual and quantitative as-
sessments.

In the proposed LLRSSTYV, we adopt matrix SVD to explore
the low-rank structure of each patch. In fact, the divided patches
can make up a tensor and, thus, the low-rank clean patches
can be regarded as a low-rank tensor. In this way, the low-
rank tensor based method could be adopted to complete the
decomposition of the clean patches and noisy patches. In the
future, we will incorporate tensor decomposition into our HSI
denoising framework.
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